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Structural stability of simple fluids and accuracy of integral-equation theories

G. Malescio and P. V. Giaquinta
Dipartimento di Fisica, Istituto Nazionale per la Fisica della Materia and Universita` degli Studi di Messina, Contrada Papardo,

98166 Messina, Italy
~Received 20 March 2000!

The ability to describe the structural stability of a fluid may represent a stringent test for the overall physical
soundness of an integral-equation theory. The accuracy of some approximate closures of the Ornstein-Zernike
equation is discussed in relation to the estimates of the density threshold of structural stability of the fluid that
are obtained through an analysis of the iterative form of the integral equation. The connection with the
random-close-packing threshold of hard spheres is also investigated.

PACS number~s!: 61.20.Gy, 05.70.Ce, 05.70.Fh
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Recently, the numerical instability at high densities of t
iterative solution of integral equations for the fluid structu
has been related to an intrinsic, structural stability thresh
of the dense fluid phase@1#. In this paper, we surmise that th
accuracy with which an integral equation is able to descr
such a feature may actually represent an alterna
‘‘benchmark’’—with respect to other, more standard therm
dynamical and structural quantities—for testing the reliab
ity of the corresponding approximate closure. We expl
this issue also in relation to the possibility of estimatin
within an integral-equation theory, the density of rando
close packing~RCP! of a fluid of hard spheres.

The concept of structural stability emerges from an ana
sis of the form of integral equations used to describe lo
density correlations in a fluid. Typically, these equations
obtained by supplementing the Ornstein-Zernike~OZ! rela-
tion with an appropriate closure, i.e., an approximate, in
pendent relation between the total correlation functionh(r )
and the direct correlation functionc(r ). In general, these
equations can be synthetically written in the form

f ~r !5A f~r !, ~1!

where f (r )PS describes the particle distribution function,S
is a set of a metric space, andA:S→S is an operator map
ping S onto itself. The fixed-point form of Eq.~1! suggests
that the equilibrium state of the fluid is characterized by
‘‘detailed balance’’ condition between the value off at a
given pointr and that resulting from a nonlocal processing
that is mathematically represented by the nonlinear inte
operatorA—of the values off over the entire system. In@1#,
the authors suggested that, within the approximation inhe
to the closure, this condition is tantamount to a definition
structural equilibrium. The nature of this equilibrium condi
tion can be associated with the fictitious dynamics tha
generated through repeated applications of the Floquet
trix for the operatorA to an arbitrary initial perturbation o
the fluid structure@1#. From this analysis, it follows that th
stability threshold of the simple iterative method, based
successive approximations to the solution of Eq.~1! that are
obtained through the mapping

f n115A fn , ~2!
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is an indicator, within the accuracy of the chosen closure
a structural transition of the system from a stable to an
stable regime. The resulting stability thresholdr inst is ex-
pected to be close to the freezing densityr f . However, the
two densities do not need to coincide since, at the freez
point, the fluid becomesthermodynamicallyunstable with
respect to the solid.

In @1#, the stability thresholdr inst was calculated for a
fluid of hard spheres within the hypernetted-chain~HNC!
and Percus-Yevick~PY! approximations. The results wer
then compared with the freezing-point density. Somew
surprisingly, the authors found that the estimates obtained
r inst do not reflect the relative accuracy shown by the t
closures in the prediction of other thermodynamical a
structural quantities. In particular, the HNC estimate ofr inst
turns out to be slightly closer tor f than the PY one. Re-
cently, this point was analyzed in more detail by investig
ing the stability of fluids interacting through inverse-pow
potentials of the formf(r );1/r n @2#. The HNC estimate of
r inst was found to be close tor f for n.4, while remaining
reasonably accurate also for smaller values ofn. On the con-
trary, as the steepness of the potential decreases, the P
sult rapidly loses any correspondence with the~increasing!
freezing density. Such a failure is more dramatic than
well-known lack of accuracy shown by the PY equation
the prediction of the structural properties of model syste
with long-ranged potentials. One of the goals of this pape
to understand which feature may be responsible for this
havior.

As discussed in@1#, the structural stability of the fluid is
related to the Floquet matrixM5(]A/] f )u f* , where f * is
the equilibrium distribution function. In order to compare th
relative accuracy of integral equations, a considerable s
plification can be achieved by considering the iterative p
cedure used to solve Eq.~1!. One single iteration of the cycle
is defined by the following operations: starting from som
initial guess forc(r ), one calculates the Fourier transfor
c(k) and then, through the OZ relation,h(k). This quantity
is Fourier inverted to obtainh(r ) and, finally, using an ap-
proximate closurec(r )5c@h(r )#, a new estimate forc(r ).
Hence, a perturbationDcn(r ) of the nth estimate of the di-
rect correlation function is tantamount to a perturbati
Dhn(r ) of the corresponding total correlation functio
which, in turn, gives rise to a perturbationDcn11(r ) of the
4439 ©2000 The American Physical Society
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new estimate ofc(r ). It is rather clear that the relevant qua
tity, as far as the stability of the solution is concerned, is
functional derivative]c(r )/]h(r ). In order to illustrate this
point, let us consider the HNC and PY equations. The c
responding closures arec(r )HNC52bu(r )1h(r )2 ln@1
1h(r)#, and c(r )PY5@11h(r )#@12ebu(r )#, where b
51/(kBT) is the inverse temperature in units of the Bolt
mann constantkB , andu(r ) is the interparticle potential@3#.
As is well known, both closures correctly yield the first-ord
term in the density expansion of the pair correlation funct
g(r ). Moreover, the PY equation, while neglecting a larg
number of diagrams than the HNC approximation, yie
more accurate results for the thermodynamical and struct
properties of systems with short-ranged potentials.A poste-
riori , this result is explained by hypothesizing a mutual a
fortuitous partial cancellation of the diagrams that are
glected in the PY approximation@3#. However, the impor-
tance of the additional diagrams included in the HNC eq
tion becomes evident when one analyzes the expression
the functional derivative]c(r )/]h(r ) which follow from the
HNC and PY approximations, respectively:

S ]c~r !

]h~r ! D
HNC

5
h~r !

11h~r !
, S ]c~r !

]h~r ! D
PY

512ebu(r ). ~3!

While the HNC derivative shows an explicit dependence
the density via the total correlation function, the PY expr
sion does not. It thus follows that the PY ‘‘response’’ of th
system to a weak perturbation of the structure is the sa
whatever the density. This is, of course, an unrealistic f
ture. We also note that, by lettingr→0 in
@]c(r )/]h(r )#HNC, one recovers the PY result. Hence, w
argue that the lower accuracy of the PY equation in estim
ing the structural stability threshold of the fluid is to be a
cribed to the less flexible form of the corresponding expr
sion for the functional derivative]c(r )/]h(r ) as far as the
density dependence is concerned.

The analysis presented above offers a perspective
evaluating the overall reliability of an approximate integ
closure. In fact, one is prompted to consider not only
accuracy with which the standard thermodynamical a
structural quantities are estimated, but also the ability of
theory to describe the structural stability of the fluid. A
approximate closure may actually yield a poor expression
the functional derivative]c(r )/]h(r ), while producing rea-
sonably accurate estimates of the thermodynamics and
structure.

As already remarked, although the stability thresholdr inst
may be expected to be close to the freezing densityr f , the
two quantities refer to distinct aspects, viz., the conditions
structural and thermodynamical stability, respectively. Fo
hard-core fluid, a quantity that is directly related to the
trinsic stability of the fluid structure is the maximum dens
achievable through a dense random-close-packed arra
ment of the particles. This threshold coincides with the t
minus of the thermodynamically metastable, overcompres
fluid branch. In the past, there have been efforts, based on
solution of a nonlinear integral equation for the singlet d
tribution function of an inhomogeneous fluid@4#, to predict
both the freezing and RCP densities within the same theo
ical approach@5#. We show in the following that, within the
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present scheme, the RCP density can be related to the s
ity threshold of themodifiediterative method:

f n115Amixf n5aA fn1~12a! f n , ~4!

where 0,a,1 is a real parameter. In this method, at ea
iteration the outputA fn that would be obtained through th
simple iterative method is mixed with the input functionf n .
The smallera, the smaller the fraction of the updated fun
tion A fn and the larger that of the previous estimatef n . It is
common experience that this method often converges e
when the simple one does not. Indeed, although the m
pings defined in Eqs.~2! and ~4! have the same fixed-poin
equation and, thus, the same fixed pointf * , the range of
stability of f * is different for the two operators@1#. In fact, if
f * is a stable fixed point forA, then it is also a stable fixed
point for Amix5aA1(12a)I , whereI is the identity opera-
tor. The opposite does not hold, namely,f * may be a stable
fixed point forAmix while being an unstable fixed point fo
A. In the latter case,f * satisfies the equilibrium condition
but the equilibrium state described is structurally unstab
since an arbitrary initial perturbation grows under repea
applications of the Floquet matrix for the operatorA.

Figure 1 shows the stability thresholdha of the operator
Amix , plotted as a function ofa, for hard spheres within the
HNC and PY approximations. The stability threshold is e
pressed in terms of the packing fractionh5(p/6)rs3,
wheres is the hard-sphere diameter. Fora51, ha is obvi-
ously equal to the previously estimated structural stabi
threshold. Asa decreases,ha and, correspondingly, the sta
bility range of the operatorAmix increase. Within the HNC
equation this happens according to a roughly linear la
whereas at least a fourth-order polynomial is necessar
order to fit the PY data. The value assumed byha for a
50 cannot be computed directly since, in this case, the
erative cycle becomes the identity mappingf n115 f n . How-
ever, the extrapolated values are, approximately, 0.665
the HNC approximation and 0.8 for the PY equation.

The operatorA has been interpreted as the mathemati
counterpart of the physical process through which part
interactions build up correlations@1#. In this respect, one

FIG. 1. Stability thresholdha of the operatorAmix plotted as a
function ofa for hard spheres within the HNC~filled dots! and PY
~open circles! approximations. The solid and open squares mark
close-packing and random-close-packing fraction, respectively.
open diamond identifies the freezing-point packing fraction.
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may argue thatAmix corresponds to a process through whi
similar correlations are built up, although more slowly: t
smallera, the slower the process. Accordingly, it is temptin
to interpret the resulting state of the system as an overc
pressed, metastable state. The stability threshold ofAmix as
a→0 would then represent the highest density attainable
the fluid, no matter how slowly~carefully! the sample was
prepared. Quite remarkably, the HNC result for hard sphe
compares very well with the currently accepted value of
RCP packing fractionhRCP.0.64 @6#. On the contrary, the
PY estimate is even higher than the absolute close-pac
fraction of hard sphereshCP5(p/6)A2.0.74, correspond-
ing to a face-centered cubic lattice. While keeping in mi
that the above interpretation is not a rigorous one, this re
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points once more to the greater reliability of the HNC equ
tion and to the intrinsic limits of the PY approximation.

We conclude this note with a comment. If no special ca
is taken in order to ‘‘neutralize’’ the presence, at high de
sities, of the solid phase~e.g., by slowing down the proces
as is done when estimatinghRCP), the fluid runs into the
structural stability thresholdh inst . This suggests that the
thermodynamical stability boundary is somehow mirrored
the structural rearrangement of the fluid as the density
proachesh inst . It is then reasonable to hypothesize tha
strong, though subtle, correlation exists between struct
and thermodynamical stability.

The authors acknowledge fruitful discussions with Dr.
Rosenfeld.
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