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Structural stability of simple fluids and accuracy of integral-equation theories
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The ability to describe the structural stability of a fluid may represent a stringent test for the overall physical
soundness of an integral-equation theory. The accuracy of some approximate closures of the Ornstein-Zernike
equation is discussed in relation to the estimates of the density threshold of structural stability of the fluid that
are obtained through an analysis of the iterative form of the integral equation. The connection with the
random-close-packing threshold of hard spheres is also investigated.

PACS numbsd(s): 61.20.Gy, 05.70.Ce, 05.70.Fh

Recently, the numerical instability at high densities of theis an indicator, within the accuracy of the chosen closure, of
iterative solution of integral equations for the fluid structurea structural transition of the system from a stable to an un-
has been related to an intrinsic, structural stability thresholdtable regime. The resulting stability thresheigls; is ex-
of the dense fluid phagé]. In this paper, we surmise that the pected to be close to the freezing dengity However, the
accuracy with which an integral equation is able to describewo densities do not need to coincide since, at the freezing
such a feature may actually represent an alternativ@oint, the fluid becomeshermodynamicallyunstable with
“benchmark”—uwith respect to other, more standard thermo-respect to the solid.
dynamical and structural quantities—for testing the reliabil- In [1], the stability threshold;,s; was calculated for a
ity of the corresponding approximate closure. We exploréefluid of hard spheres within the hypernetted-chéitNC)
this issue also in relation to the possibility of estimating,and Percus-YevickPY) approximations. The results were
within an integral-equation theory, the density of randomthen compared with the freezing-point density. Somewhat
close packingRCP of a fluid of hard spheres. surprisingly, the authors found that the estimates obtained for

The concept of structural stability emerges from an analyp,,s; do not reflect the relative accuracy shown by the two
sis of the form of integral equations used to describe locatlosures in the prediction of other thermodynamical and
density correlations in a fluid. Typically, these equations arestructural quantities. In particular, the HNC estimategf;
obtained by supplementing the Ornstein-Zernik&) rela-  turns out to be slightly closer tp; than the PY one. Re-
tion with an appropriate closure, i.e., an approximate, indeeently, this point was analyzed in more detail by investigat-
pendent relation between the total correlation functign) ing the stability of fluids interacting through inverse-power
and the direct correlation functioo(r). In general, these potentials of the formp(r)~1/r" [2]. The HNC estimate of

equations can be synthetically written in the form pinst Was found to be close tp; for n>4, while remaining
reasonably accurate also for smaller values.ddn the con-
f(r)=Af(r), (1) trary, as the steepness of the potential decreases, the PY re-

sult rapidly loses any correspondence with {irereasing
) . o ) freezing density. Such a failure is more dramatic than the
yvheref(r) eS despnbes the particle Q|str|but|on functid®, \ell-known lack of accuracy shown by the PY equation in
is a set of a metric space, a#dS— S is an operator map-  he prediction of the structural properties of model systems
ping S onto itself. The fixed-point form of Eq1) suggests yyith |ong-ranged potentials. One of the goals of this paper is
that the equilibrium state of the fluid is characterized by &g, \,nderstand which feature may be responsible for this be-
“detailed balance” condition between the value bt a  pavior.
given pointr and that resulting from a nonlocal processing—  as discussed ifil], the structural stability of the fluid is
that is mathematically represented by the nonlinear integrgls|ated to the Floquet matrikl = (JA/3f)|«, where f* is
operatorA—of the values of over the entire system. [il],  he equilibrium distribution function. In order to compare the
the authors suggested that, within the approximation inherengative accuracy of integral equations, a considerable sim-
to the closure, this condition is tantamount to a definition Ofplification can be achieved by considering the iterative pro-
structural equilibrium The nature of this equilibrium condi- equre used to solve E€L). One single iteration of the cycle
tion can be associated with the _f|ct|_t|ous dynamics that iS5 gefined by the following operations: starting from some
generated through repeated applications of the Floquet Maysiial guess forc(r), one calculates the Fourier transform
trix for the operatorA to an arbitrary initial perturbation of c(k) and then, through the OZ relatioh(k). This quantity
the fluid structurd 1]. From this analysis, it follows that the s Eourier inverted to obtaih(r) and, finally, using an ap-
stability threshold of the simple iterative method, based OThroximate closure(r)=c[h(r)], a new estimate foc(r).
successive approximations to the solution of Hg.that are Hence, a perturbatiohc,(r) of the nth estimate of the di-
obtained through the mapping rect correlation function is tantamount to a perturbation
Ah,(r) of the corresponding total correlation function,
for1=Af,, (20 which, in turn, gives rise to a perturbatiarc,, 1(r) of the
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new estimate of(r). It is rather clear that the relevant quan- 0.8 —— . . ‘ . ‘ .
tity, as far as the stability of the solution is concerned, is the l\
functional derivativedc(r)/dh(r). In order to illustrate this )
point, let us consider the HNC and PY equations. The cor- %7 ~\ 1
responding closures are(r)yne=—Bu(r)+h(r)—In[1 [fe, a
+h()], and c(r)py=[1+h(r)][1—e?'"], where B s T el
=1/(kgT) is the inverse temperature in units of the Boltz- s 06 T¥yg
mann constarkg, andu(r) is the interparticle potentigB]. : T~
As is well known, both closures correctly yield the first-order 05 S |
term in the density expansion of the pair correlation function DR I
[
1

g(r). Moreover, the PY equation, while neglecting a larger i I
number of diagrams than the HNC approximation, yields 0.4 . . . ! ‘ . ‘ .

more accurate results for the thermodynamical and structura 0 0.2 0.4 0.6 08
properties of systems with short-ranged potentiélgoste- i

riori, this result is explained by hypothesizing a mutual and g 1. Stability thresholdy,, of the operator,,;, plotted as a
fortuitous partial cancellation of the diagrams that are Netynction of « for hard spheres within the HN@illed dots and PY
glected in the PY approximatiof8]. However, the impor- (open circles approximations. The solid and open squares mark the
tance of the additional diagrams included in the HNC equaciose-packing and random-close-packing fraction, respectively. The
tion becomes evident when one analyzes the expressions fgpen diamond identifies the freezing-point packing fraction.
the functional derivativeéc(r)/oh(r) which follow from the
HNC and PY approximations, respectively: present scheme, the RCP density can be related to the stabil-
ity threshold of themodifiediterative method:
(&c(r)) h(r) (ac(r)
HNC

- , ) =1-ef, (3 _ _
ah(r) 1+h(n’ \ah(n/,, fre1=Amixfn= A, +(1—a)f,, (4)

While the HNC derivative shows an explicit dependence orvhere 0<a<1 is a real parameter. In this method, at each
the density via the total correlation function, the PY expresdteration the outpuAf, that would be obtained through the
sion does not. It thus follows that the PY “response” of the Simple iterative method is mixed with the input functigy.
system to a weak perturbation of the structure is the samé&he smallera, the smaller the fraction of the updated func-
whatever the density. This is, of course, an unrealistic feation Af, and the larger that of the previous estimge It is
ture. We also note that, by lettingp—0 in common experience that this method often converges even
[9c(r)/oh(r)]unc, One recovers the PY result. Hence, wewhen the simple one does not. Indeed, although the map-
argue that the lower accuracy of the PY equation in estimatPings defined in Eqs2) and (4) have the same fixed-point
ing the structural stability threshold of the fluid is to be as-equation and, thus, the same fixed poifit the range of
cribed to the less flexible form of the corresponding expresstability of f* is different for the two operatoifd]. In fact, if
sion for the functional derivativec(r)/oh(r) as far as the f* is a stable fixed point foA, then it is also a stable fixed
density dependence is concerned. point for A,ix= @A+ (1—a)l, wherel is the identity opera-

The analysis presented above offers a perspective fder. The opposite does not hold, namef§, may be a stable
evaluating the overall reliability of an approximate integral fixed point for A, while being an unstable fixed point for
closure. In fact, one is prompted to consider not only theA. In the latter casef* satisfies the equilibrium condition
accuracy with which the standard thermodynamical andut the equilibrium state described is structurally unstable,
structural quantities are estimated, but also the ability of th&ince an arbitrary initial perturbation grows under repeated
theory to describe the structural stability of the fluid. An applications of the Floquet matrix for the operafor
approximate closure may actually yield a poor expression for Figure 1 shows the stability threshoig, of the operator
the functional derivativeic(r)/oh(r), while producing rea- Anpix. plotted as a function ok, for hard spheres within the
sonably accurate estimates of the thermodynamics and pditNC and PY approximations. The stability threshold is ex-
structure. pressed in terms of the packing fraction=(w/6)po3,

As already remarked, although the stability threshgld,  whereo is the hard-sphere diameter. Fer=1, 7, is obvi-
may be expected to be close to the freezing densitythe  ously equal to the previously estimated structural stability
two quantities refer to distinct aspects, viz., the conditions othreshold. Asa decreasesy, and, correspondingly, the sta-
structural and thermodynamical stability, respectively. For aility range of the operatoA,;x increase. Within the HNC
hard-core fluid, a quantity that is directly related to the in-equation this happens according to a roughly linear law,
trinsic stability of the fluid structure is the maximum density whereas at least a fourth-order polynomial is necessary in
achievable through a dense random-close-packed arrangerder to fit the PY data. The value assumed #y for «
ment of the particles. This threshold coincides with the ter-=0 cannot be computed directly since, in this case, the it-
minus of the thermodynamically metastable, overcompresseerative cycle becomes the identity mapping ;=f,. How-
fluid branch. In the past, there have been efforts, based on ttever, the extrapolated values are, approximately, 0.665 for
solution of a nonlinear integral equation for the singlet dis-the HNC approximation and 0.8 for the PY equation.
tribution function of an inhomogeneous fluid], to predict The operatotA has been interpreted as the mathematical
both the freezing and RCP densities within the same theoretounterpart of the physical process through which particle
ical approach5]. We show in the following that, within the interactions build up correlationgl]. In this respect, one
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may argue tha#\,;, corresponds to a process through whichpoints once more to the greater reliability of the HNC equa-
similar correlations are built up, although more slowly: thetion and to the intrinsic limits of the PY approximation.
smallera, the slower the process. Accordingly, it is tempting ~ We conclude this note with a comment. If no special care
to interpret the resulting state of the system as an overconis taken in order to “neutralize” the presence, at high den-
pressed, metastable state. The stability thresholdlgf as  Sities, of the solid phase.g., by slowing down the process
a—0 would then represent the highest density attainable bS is done when estimatinggcp), the fluid runs into the
the fluid, no matter how slowlycarefully) the sample was Structural stability thresholdyi,s;. This suggests that the
prepared. Quite remarkably, the HNC result for hard Spheret\ﬁermodynamlcal stability boundary is spmehow m|rrored in
compares very well with the currently accepted value of thdhe structural rearrangement of the fluid as the Qen3|ty ap-
RCP packing fractionyecp=0.64[6]. On the contrary, the proachesn;,s;. It is then reaso_nable to hypothesize that a
PY estimate is even higher than the absolute close—packingtrong' though suptle, corrglatlon exists between structural
fraction of hard spheregcp=(7/6)y2=0.74, correspond- nd thermodynamical stability.
ing to a face-centered cubic lattice. While keeping in mind The authors acknowledge fruitful discussions with Dr. Y.
that the above interpretation is not a rigorous one, this resuRosenfeld.
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